

Groupe de Liège du Mouvement politique des objecteurs de croissance www.liege.mpOC.be

Le 14 août 2011 Mise à jour du 1er mars 2018

Sans lendemain

« Il est aujourd'hui plus facile d'imaginer la fin du monde que celle du capitalisme »

(Fredric Jameson, cité dans Notre ennemi, le capital, Jean-Claude Michéa)

Francis Leboutte Ingénieur civil, membre du mpOC-Liège et de l'ASPO.be

Libre d'utilisation sous licence Creative Commons BY-ND (paternité, pas de modification)

Sans Lendemain, chapitre 1 et 2

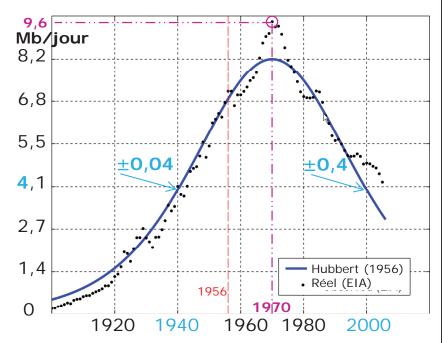
Introduction L'énergie

Production de pétrole brut conventionnel US (48 états)

Pic en 1970 : 9,6 Mb/jour

Unités:

- -1 baril = 159 litres
- Mb : méga-baril ou


million de barils

- Gb : giga-baril ou

milliard de barils

Soit:

(100 m x 100 m) x 150 m /j 3,5 Gb/an 17,6 m³/s

- Courbe de production en cloche (cas « idéal »).
- L'extraction de toute ressource non renouvelable connaît un début, un maximum et une fin.
- 2. Avec le temps, l'extraction est de + en + énergivore (REEI ↓↓)

Le pétrole

Propriétés uniques

Liquide, énergétiquement dense, un accès *facile*, disponible en *grande* quantité, aisément transportable, adapté à des applications diverses

Densité énergétique

10 kWh/L = 8.600 kcal/L

11,6 kWh/kg = 10.000 kcal/kg

Énergie mécanique restituée

1 litre de pétrole dans une machine (pelleteuse,...)

 \rightarrow

± 20 jours de travail intense d'un homme
 (400 kcal brûlées par heure de travail, 8 h/j)

REEI et énergie nette

Ratio de l'Energie utilisable sur l'Energie Investie

REEI = Eu/Ei

Eu: Energie utilisable Ei : Energie investie

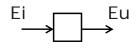
En = Eu – Ei (*Energie nette*, « gagnée »)

REEI = 5 (5 pour 1) Énergie nette = 4b

REEI = 1 : énergie nette nulle

REEI < 1 : énergie nette négative (perte d'énergie)

Évolution dans le temps du REEI du pétrole étasunien


(« 100 pour 1 ») 1930 : 100

1970: 38 2000: 12 ?

→ L'énergie nette diminue avec le temps

liege.mpOC.be

Quel REEI? Quel Ei?

REEI = Eu/Ei

En = Eu - Ei

1. Normalisé : Ei sur le site de production

2. Pour utilisation: + Ei pour le raffinage et le transport 3. Étendu : + Ei pour l'infrastructure

4. Sociétal : + Ei pour tout le reste (recherches, impacts,...)

 $REEI_{NOR} > REEI_{UTI} > REEI_{ETE} > REEI_{SOC}$

→ Diminution de En (énergie nette)

Source	« REEI »
Pétrole de schiste	1 et de 1 à plus
Fission nucléaire	< 1 et de 5 à 100
Fusion nucléaire	< 1 (probablement)
Hydroélectricité	de 11 à 40
Bois et éolien	30
Photovoltaïque	de 6 à 12
Éthanol de maïs US	± 1

liege.mpOC.be

Pétrole non conventionnel

- 1. Pétrole:
 - de roche-mère (« schiste »).
 - Arctique et en mer à grande profondeur.
 (> 500 m ; ex. : Deepwater Horizon, 2010).
- 2. Autres:
 - sables bitumineux (Alberta)
 - Huiles extra-lourdes.
 - Schistes bitumineux (kérogène).
 - ...

Caractéristiques

- Extraction et production difficiles (techniques spéciales : fracturation hydraulique,...).
- 2. Risque, REEI faible, coûteux.
- 3. Impact environnemental très élevé (ressources, pollution, GES).

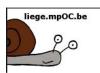
Sables bitumineux - Nord-Est de l'Alberta, Canada

Mine Suncor Millennium, nord de Fort McMurray Photo: Peter Essick (nationalgeographic.com)

Photo: www.pembina.org

- 140.000 km² (forêts boréales et zones humides) 4,5 x S de ...
- Réserve de 175 milliards de barils (pétrole brut de synthèse),
 à extraire en surface (20 %) et in situ (80 %) 6 années de ...
- Extraction-production 2012 : 1,9 Mb/j
- Consomme 3 barils d'eau par baril de pétrole (extr. en surf.)
 → Lacs de stockage d'eau toxique (> 1 milliard de litres, 150 km²)
- REEI: ± 4,5 (Charles Hall, 2013: front end of the life-cycle, only) (3x moins pour extr. in situ que pour extr. en surf.)
 - → GES

Hydrofracturation (pétrole et gaz de schiste)


Risques et pollutions

- Forte consommation d'eau douce, injectée sous pression avec :
 - du sable en quantité ;
 - des centaines de produits chimiques toxiques.
- La moitié environ du liquide injecté reste dans le sous-sol.
- Risque élevé de pollution des nappes aquifères (eau potable).
- Le gaz est rarement pur : azote, radon, métaux lourds,...; augmente encore les atteintes à l'environnement.
- Fuite aérienne du méthane (GES puissant) et des chimiques.
- Production et durée de vie d'un puits sont faibles :
 - → Forte densité de forage (forer, forer et encore forer).
 - → Trafic intense de poids lourds (eau, sable, matériel,...).
- Augmentation de la sismicité.

Pétrole non conventionnel et énergie nucléaire Points communs

- Faible part de l'énergie finale mondiale, en 2013 :
 - non conventionnel : 1,5 %nucléaire : 2 %
- REEI sociétal sans intérêt (< 1).
- Impact élevé :
 - santé publique et
 - destruction de la nature.
- Coût et conséquences reportés sur les générations futures.

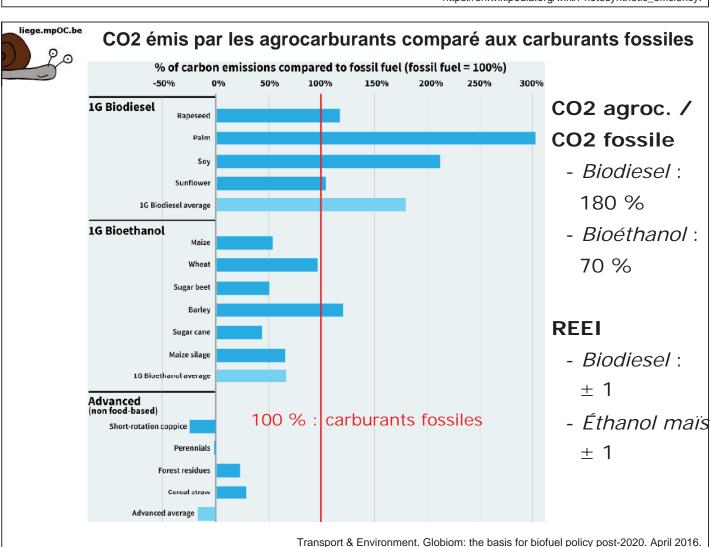
Agrocarburants et carburants fossiles : impact climatique comparé

Remarque préalable

L'efficacité de la photosynthèse est faible, de 0,1 à 2 % (fraction de l'énergie lumineuse atteignant une *feuille* convertie en énergie chimique lors de la photosynthèse - CO2 → glucide)

Émission de CO2 lors du cycle de vie

Que comptabiliser?


Agrocarburants

- Émission directe : culture, traitement, transport et distribution
- Émission du changement d'affectation des sols.

Combustibles fossiles

- Émission directe : extraction, traitement, transport et distribution.
- Émission lors de la combustion.

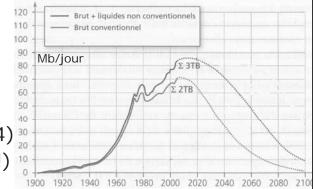
https://en.wikipedia.org/wiki/Photosynthetic_efficiency.

Exemple de l'huile de palme

Indonésie et Malaisie : 85 % de la production mondiale (3 x la surface de la Belgique en Indonésie)

En Europe:

- Les importations ont doublé en 10 ans (6,5 Mt en 2016)
- 2^e importateur mondial (12 kg/hxan)
- 46% pour le « biodiesel » Directive européenne RED-1, 2009 10 % ren.
- Projections à la hausse


Impacts

- Déforestation et conversion des terres fertiles.
- Augmentation des GES (changement d'affectation des sols).
- Chute de la biodiversité.
- Communautés rurales affectées.
- Surconsommation nocive (> 40 % acides gras saturés).

liege.mpOC.be

« Production » de « pétrole » dans le monde : tendances

- Pétrole (B+C) conventionnel : pic en 2006 à 70 Mb/j (AIE)
- Pétrole (B+C), conv. et non conv. : 50/40 73,5 Mb/j (2006) → 77,8 Mb/j (2014) 30/20 (+ 5 %... grâce aux condensats!) 10/20

- Tous les liquides (pétrole brut, condensats, LGN, gains, agros,...) : 85,1 Mb/j (2006) → 93,2 Mb/j (2014)
Ersatz de pétrole brut en 2014 : > 30 %

Pétrole brut (B, uniquement), depuis 2006 :

- Le non conventionnel *compense tout juste* la déplétion du conventionnel.
- Sa production stagne à moins de 70 Mb/j.

B+C : Brut + Condensats (aux puits de gaz : pentane...)

C+C: Crude (brut) + Condensate

Données EIA, 2016 - Graphique : Adolphe Nicolas, Énergies : une pénurie au secours du climat, 2011

Et le climat...

Analyse de la production de pétrole : un intérêt limité.

Laisser 85 % de toutes les réserves d'énergies fossiles dans le sol (objectif : réchauffement maximum de 1,5 °C en 2100).

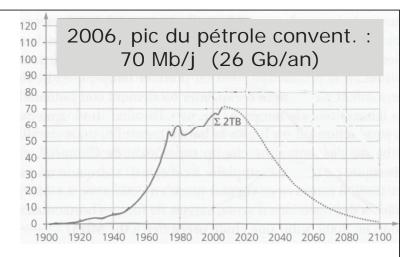
Soit, au minimum:

- Arrêt du charbon.
- Interdire les nouvelles exploitations et infrastructures de transport pour les énergies fossiles.
- Arrêter l'exploitation du non-conventionnel (USA, Canada).

Oil Change International, sept. 2016

Consommation par pays. Équité et dépendance

2011


	Pétrole b/an.h	Pétrole l/j.h	E primaire en lep/j.h	
USA	22,20	9,67	24,53	
France	9,88	4,30	13,02	
Allemagne	10,77	4,69	12,98	
Europe	8,57	3,73	10,58	
Chine	2,85	1,24	6,06	
Maroc	3,35	1,46	1,69	
Congo Kinshasa	0,10	0,04	0,12	
Monde	4,79	2,09	5,88	

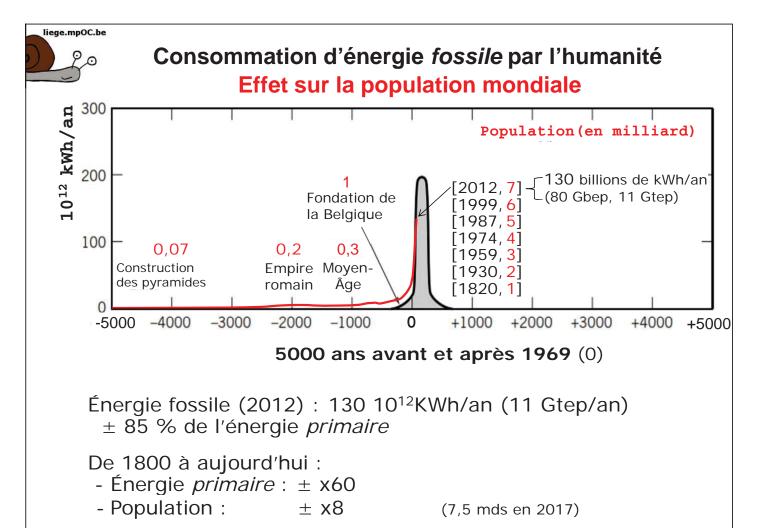
b : baril, h : habitant, L : litre, j : jour, lep : litre d'équivalent-pétrole « Europe » : 609 millions h. (avec Turquie – 1,4 l/j.h et 5 lep/j.h – , sans les Pays Baltes)

Plus de 2 milliards de personnes n'ont que le bois de chauffe comme source d'énergie

Source : U.S. Energy Information Administration (EIA) et U.S. Census Bureau. Compilation : FL

« *Crise* » de l'énergie : que craindre, dans une société croissanciste ?

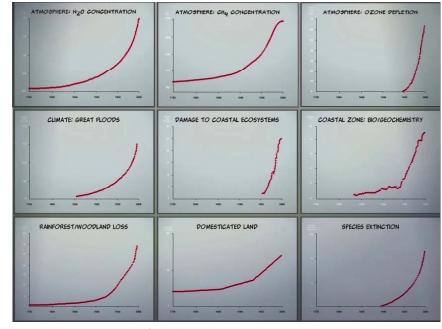
- La fin du pétrole?
- La fin du pétrole et de l'énergie bon marché ?
 (la récession durable dans une économie capitaliste basée sur la croissance infinie)
- Le pétrole surabondant ?
 (GES) → 85 % des réserves de c. fossile à laisser...
- La décroissance ?
 (projet sociopolitique,
 alternative au modèle actuel et à la récession)



Graphique : Adolphe Nicolas, Énergies : une pénurie au secours du climat, 2011

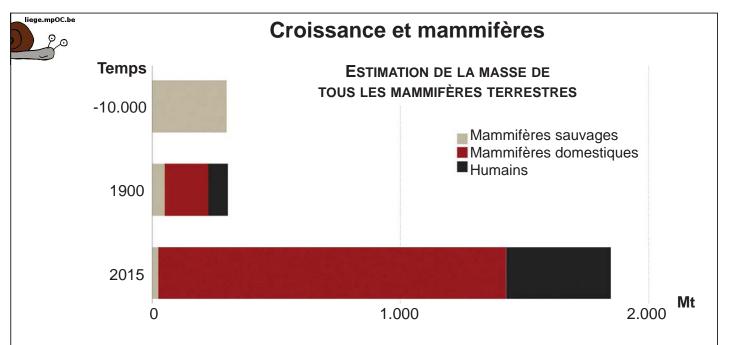
Sans Lendemain, chapitre 3

La croissance



liege.mpOC.be

Quelques uns des autres effets de la croissance


Graphique consommation énergie fossile: M. K. Hubbert, Resources and Man, 1969. Courbe population: compilation FL.

- « La croissance a entraîné
- une surconcentration en oxyde nitreux et
- 2. en **méthane** dans l'atmosphère,
- 3. la destruction de la couche d'ozone,
- I'augmentation du nombre des fortes inondations,
- 5. la destruction des écosystèmes marins,
- 6. y compris par l'excès d'azote dans les eaux de ruissellement,
- 7. la déforestation,

« Accélération » : une constante...

- 8. une augmentation de la surface terrestre occupée par l'humanité et
- 9. l'extinction de nombreuses espèces. » (extrait du film Sans Lendemain).
- + la croissance exponentielle des rejets de CO_2 , de l'extraction des minerais, du nombre et du volume des produits chimiques déversés dans la nature, des cancers, de l'obésité, de l'autisme, de l'EHS, ...

Masse des humains + mammifères domestiques

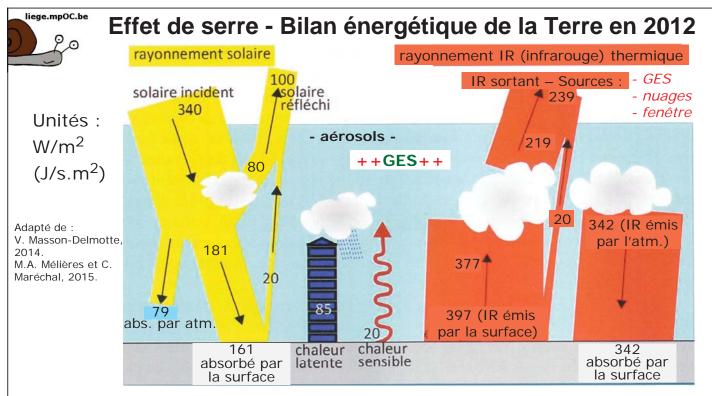
1. En % de la masse totale des mammifères terrestres :

-10.000 : 0,1 % 1900 : 85 % 2015 : 97 %

2. En 2015, elle est = à 5 fois la masse totale en 1900 (ou -10.000) $(\pm 1.800 \text{ Mt} - \text{millions de tonnes})$

. Vaclav Smil. Harvesting the Biosphere: What We Have Taken from Nature. The MIT Press, 2013. Richard Heinberg. There's No App for That. www.postcarbon.org, 2017

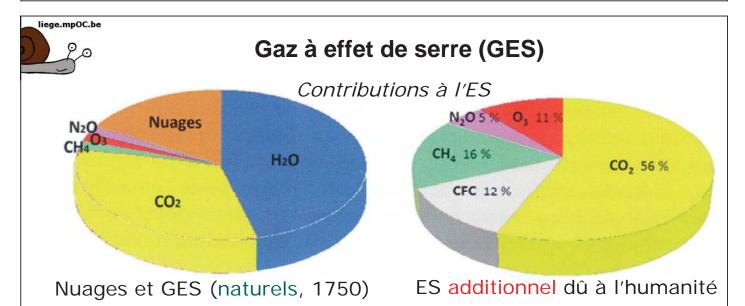
Quel futur pour les métaux ?


Métal	Année du pic	Production
Or	2006	2,6 kt
Argent	2015	20 kt
Cuivre	2015	< 20 Mt

- 40 métaux utilisés
- Reste 30-40 ans d'extraction pour la plupart (au taux 2010).

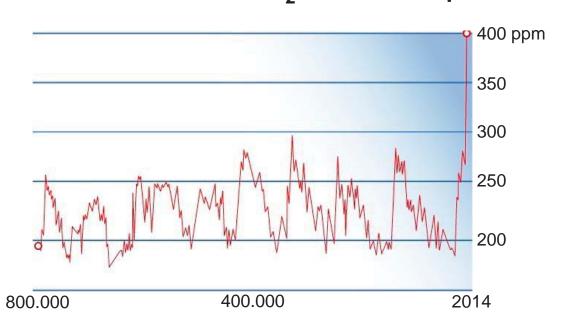
Diminution de la teneur en métal des minerais. Exemple du cuivre : 1900 : 2 %. 2010 : 0,8 %. Actuellement : 0,5 % et moins.

- → Explosion :
 - Quantité de déchets miniers.
 - Quantité d'énergie nécessaire pour produire le métal pur.
 - Donc des coûts.

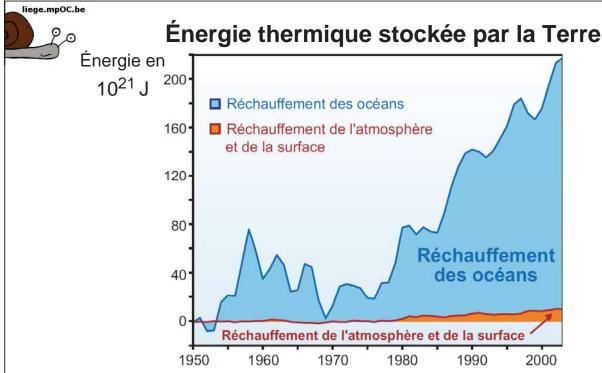

Industrie extractive : 8-10 % de l'énergie mondiale.

- 47% du rayon. solaire est absorbé par la surface (23% par l'atmosphère)
- Restitution de cette énergie : évaporation, convection, IR (infrarouge).
- IR (longueur d'onde + grande) : piégé par les GES (vap. d'eau, CO₂,...).

Bilan radiatif de la planète : 340 (\downarrow) \neq 100 +239 (\uparrow)


Déséquilibre : +1 W/m² (0,6) absorbé par la surface (5 bombes A par sec.)

- Principaux GES : vapeur d'eau, CO_2 , CH_4 , CFC, O_3 et N_2O .
- À l'état de trace (ex. du CO₂ : 0,0401 % ou 401 ppm)
- Très absorbants des rayonnements infrarouges (au contraire de la lumière solaire)


Concentration en CO₂ dans l'atmosphère

- Température de la terre et concentration en CO2 sont liées.
- Depuis 800.000 ans, jusqu'à présent, jamais la concentration en CO₂ n'avait dépassé les 300 ppm :

2016 : 1ère année à plus de 400 ppm

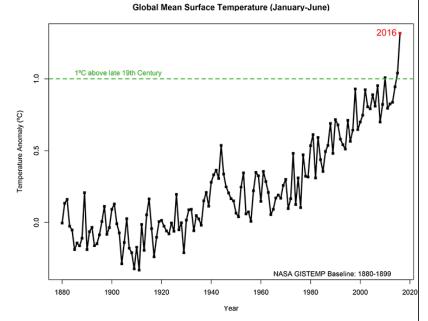
Valeur courante en CO2 : climate.nasa.gov (NOOA) - Figure : www.polarsea360.com/fr/episodes/09/

Énergie (E) supplémentaire absorbée par la surface suite à l'accroissement de l'effet de serre (ES) :

- Depuis 1970 : accumulation d'énergie de 2,5 bombes d'Hiroshima par s.
- Les océans absorbent 93 % de ce supplément d'énergie de l'ES.
 - (- Cryosphère : 3 %. Sol : 3 %. Atmosphère : 1 %.).
- → Réchauffement.

Schéma: skepticalscience.com

Effets physiques majeurs


Augmentation de la température de surface globale

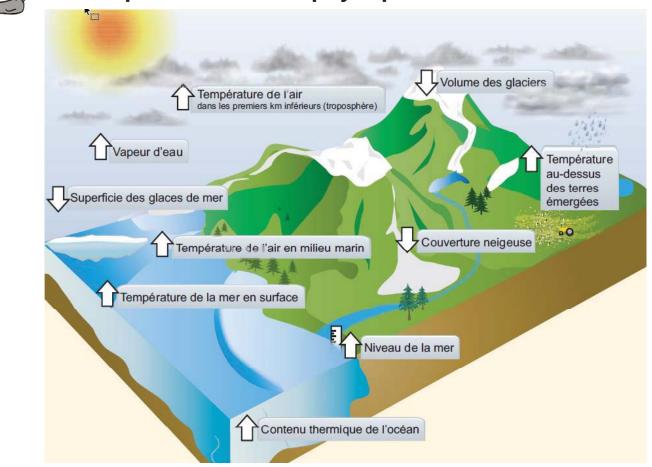
Depuis 1880 :

1,02 °C en 2015

± 1,1 °C en 2016

(moyenne pour le globe, c'est ± 2 °C dans l'Arctique)

Augmentation du niveau de la mer


- **19 cm** (1901 2010)
- 3,2 mm/an dans les 20 dernières années (2 x plus vite qu'avant)

climate.nasa.gov, etc..

5e rapport du.GIEC, 2013 - 2014

Quelques autre effets physiques du réchauffement

Évolution du glacier Muir en Alaska

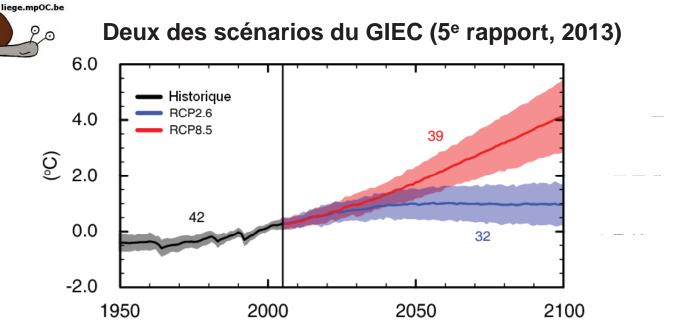
de 1941 à 2004

Entre les 63 ans qui séparent ces deux photos, le glacier a reculé de plus de 7 km.

www.usgs.gov/climate_landuse/glaciers/

Flore et faune : en route vers une 6e extinction massive

- Taux d'extinction actuel : cent fois le taux naturel d'extinction.
- 200 espèces de vertébrés disparues (100 ans).
- 75 % des espèces disparaitraient en 2200 si rien n'est fait.


Causes

- 1. Conversion massive des terres : agriculture (élevage), etc.
- 2. Croissance de la pollution chimique.
- 3. Augmentation de la population humaine (\rightarrow 1 et 2)
- 4. En dernier, le réchauffement climatique.

Le réchauffement climatique

- accélèrera l'extinction et
- deviendra la 1ère cause

si rien n'est fait pour le limiter.

Modélisation selon les GES et polluants émis et l'utilisation des terres dans le futur. Température (*moyenne*) relative à l'époque préindustrielle.

- 1. Scénario émissif (tendance actuelle):
 ± 4 °C en 2100 et ± 11 °C en 2200.
 Mais pic du charbon au plus tard en 2025...
- 2. Scénario d'atténuation : réchauffement sous les 2 °C.

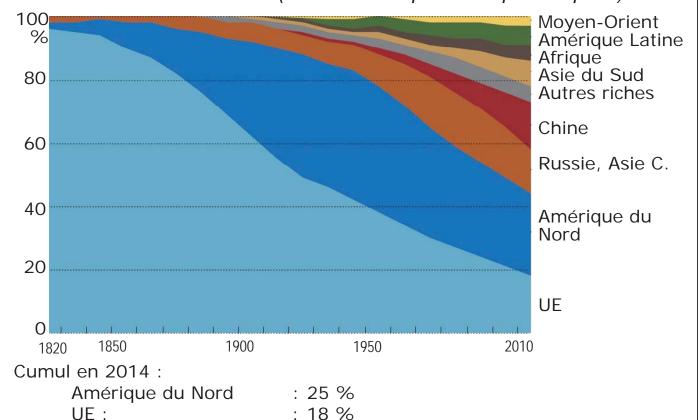
GIEC, 5e rapport, septembre 2013

Pas le choix...

S'engager dans le scénario d'atténuation et rester sous les 2 °C de réchauffement par rapport à l'ère préindustrielle.

Seuil de sécurité climatique : 1,5 °C

Concrètement, les gouvernements doivent renoncer à exploiter 85 %


de toutes les réserves de combustibles fossiles.

- \rightarrow
- Arrêt du charbon.
- Interdire toutes nouvelles exploitations et infrastructures de transport des énergies fossiles.
- Arrêter l'exploitation de certains champs dans les pays riches (le non-conventionnel en premier).

Émissions cumulées de GES de 1820 à 2014

Production locale (sans tenir compte des imports-exports)

Émissions des GES et inégalités selon les régions

: 12 %

En **tonne de CO₂e par individu et par an** (moyenne par région), selon la *production* (*Prod*.) et la *consommation* (*Cons*.) - 2013

Émission sur base de la consommation :

Chine

- *Réalloue* des émissions aux pays riches (+ 41 % en Europe)
- Ajuste l'inégalité à la hausse.

Soutenable:

- Scénario d'atténuation (RCP2.6) : budget de 1.000 GtCO₂e -> 2100
- Cumul de la population annuelle jusque 2100 : 795 milliards

	Prod.	Ratio	Cons.	Ratio	% C-P
Monde	6,2	1,0	6,2	1,0	0
Amérique du N.	20,0	3,2	22,5	3,6	+13
Russie - Asie C.	10,0	1,6			
Europe de l'O.	9,0	1,5	13,1	2,1	+41
Moyen-Orient	8,0	1,3	7,4	1,2	-8
Chine	8,0	1,3	6,0	1,0	-25
Amérique du S.	5,2	0,8	4,4	0,7	-15
Asie du S.	2,4	0,4	2,2	0,4	-8
Afrique	2,4	0,4	1,9	0,3	-21
Soutenable	1,3	0,2	1,3	0,2	0

Thomas Piketty, Lucas Chancel. Carbon and inequality: from Kyoto to Paris. 2015

Ratio : ratio par rapport à la moyenne mondiale % C-P : changement Cons. - Prod. en %

 \rightarrow

- 1,3 tCO₂e par individu et par an
 - 10 fois moins que la moyenne européenne
 - 5 fois moins que la moyenne mondiale

Partage du monde en 3 groupes d'individus : les 10 % les plus émetteurs, 40 % (médian) et 50 % (les moins...)

Règle des 10-50 :

-10 % les plus émetteurs : ± 50 % des GES

Répartition : USA : 40 % - UE : 20 % - Chine : 10 % - ...

Moyenne : $28 tCO_2e$

- 50 % les moins émetteurs : ± 10 % des GES

Répartition: Inde: 36 % - Chine: 16 % - ...

Moyenne: $1,6 tCO_2e$

Les 40 % des émetteurs du groupe médian : ± 40 % des GES

Répartition : Chine : 35 % - UE : 18 % - USA : 5 % - ...

Moyenne: 6,5 tCO₂e

Remarque

1/3 des GES des 10 % les plus émetteurs : pays émergents

Thomas Piketty, Lucas Chancel. Carbon and inequality: from Kyoto to Paris. 2015

Les émetteurs individuels, les extrêmes

Groupes des 10 % les moins émetteurs, les 3 premiers

	Pop.	GES	€
Honduras	0,8	0,09	64
Mozombique	2,6	0,11	117
Ruanda	1,2	0,12	215

Pop. : million d'individus dans groupe.

GES: tCO₂e par individu et par an.

€ : revenu annuel.

Groupes des 1 % les plus émetteurs, les 3 premiers

	Pop.	GES	€
USA	3,16	318,00	542.453
Luxembourg	0,01	287,00	220.709
Singapour	0,05	251,00	250.492

Les 1 % les plus émetteurs (tous) :

- 50 fois plus que la moyenne mondiale
- 2500 fois plus que les moins émetteurs (groupe des 10 %)

Les 10 % les moins émetteurs :

- 50 fois moins que la moyenne mondiale

Un constat : augmentation des inégalités intra-pays (€ et GES)

liege.mpOC.be

Une évidence et une conséquence

Plus vous êtes riche, plus

- vous contribuez à la destruction de la nature,
- vous êtes une menace pour la survie de l'espèce humaine.

Éloge d'une certaine pauvreté :

Gandi (Autobiographie, 1925):

« Il n'y aura pas de réforme possible tant que les gens éduqués et riches n'accepteront pas volontairement le statut des pauvres ».

Sans Lendemain, chapitre 4

La nourriture

liege.mpOC.be

Rendement de l'agriculture

« L'utilisation d'engrais artificiels a nourri bien plus de personnes que ce qui aurait été possible avec l'agriculture biologique seule. »

En fait...

Rendement de l'agriculture bio par rapport à l'agriculture industrielle (aujourd'hui) :

- Pays riche

- Maïs et soja: 94 %

- Blé: 97 %

- Maraîchage: 100 %

- Pays pauvre : supérieur.

+ 20 % pour le coton (Inde).

...

Révolution (?) verte

« Selon Norman Borlaug, le père de la Révolution verte,... »

1961-1985 : doublement de la production céréalière dans les pays du sud par

- l'usage intensif des fertilisants, pesticides et herbicides à base des carburants fossiles;
- augmentation des surfaces cultivées.

Sur le modèle de l'agriculture industrielle étasunienne

- 12 calories énergétiques consommées pour produire
 1 calorie alimentaire dans l'assiette.
- Arme de destruction massive de la nature et du climat.
- Aboutissant à un système alimentaire mondial responsable de ± 50 % des émissions de GES

- Déforestation -> monoculture	17 %
- Agriculture industrielle	13 %
- Transports	6 %
- Transformation et emballage	9 %
- Réfrigération	3 %
- Gaspillage	3-4 %

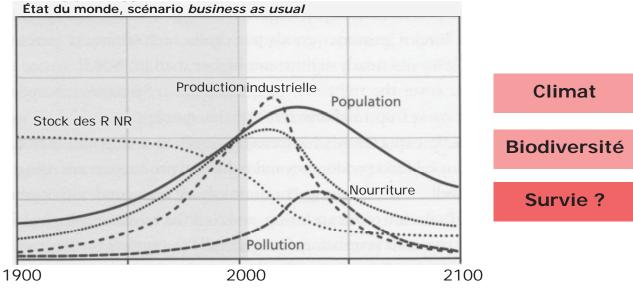
Richard Heinberg, Can a City Be Sustainable? --- Via Campesina & GRAIN

Sans Lendemain, chapitre 5

Happy end

En résumé

La croissance n'est pas la solution, c'est le problème.

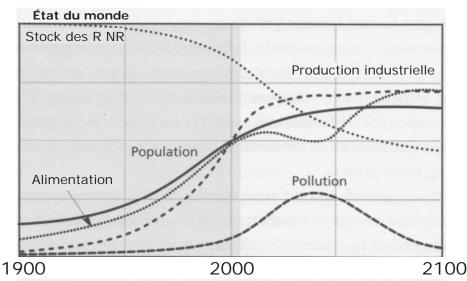


Le soi-disant développement durable...

« Le soi-disant développement durable est une illusion car il fait aussi appel, de façon toujours croissante, aux métaux et minéraux non-renouvelables,... »

Rapport Meadows : scénario du statu quo (business as usual) - 1972, 1993 et 2004

- Effondrement de la production industrielle suite à l'explosion du coût des ressources non renouvelables.
- Entraı̂ne la chute des 4 autres paramètres.


Un des effets de la croissance exponentielle : de 2000 à 2020, consommation des ressources NR comme durant tout le XXe siècle.

Limits to Growth, The 30-Year Update. Donella Meadows, Dennis Meadows, Jorgen Randers. 2004.

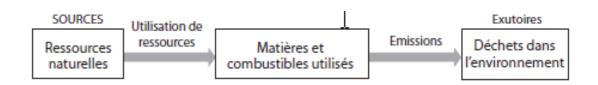
Meadows : scénario de la société durable

Un scénario plus sympathique, sous conditions.

À partir de **2002** :

- Stabilisation de la production industrielle.
- Politiques de stabilisation de la population.
- Consommation de biens par personne modeste [et répartition équitable].
- Techniques propres et économes des ressources.
- Préservation des ressources.
- Pratiques agricoles saines.

Limits to Growth, The 30-Year Update. Donella Meadows, Dennis Meadows, Jorgen Randers. 2004.



Que faire ? (Physique, IPAT - 1)

Impact d'une population sur son environnement :

$$I = P \times A \times T$$

- I Impact sur les sources et les exutoires.
- P Population, le nombre d'individus.
- A le niveau de consommation (*Affluence*).
- T les dégâts des **T**echniques utilisées.

Que faire ? (Physique, IPAT - 2)

Agir sur les 3 facteurs :

- 1. Réduire *radicalement* les flux d'énergie et de matière (la production et la consommation)
- 2. Se débarrasser des techniques énergivores ou qui n'ont pas fait la preuve de leur innocuité (du nucléaire d'urgence).
- 3. Démographie : inverser la tendance
 - Pays pauvres : aide à la « transition démographique » (partage de la richesse, éducation, moyens contraceptifs).
 - Pays riches : politiques natalistes → dénatalistes

Pour

- restaurer la biocapacité de la terre et
- enrayer la chute de la biodiversité et le réchauffement climatique.

...

Que faire ? (3. politique)

Et moi, et mes amis, et nous tous?

S'engager dans les 3 voies du mouvement sociopolitique de la décroissance :

- 1. La sobriété choisie (ou simplicité volontaire).
- 2. Les expérimentations collectives (AMAP, SEL, villes lentes et en transition,...).
- 3. La voie politique.

En finir avec le productivisme et le capitalisme

...

Que faire ? (4. politique)

Changer de paradigme*

- 1. La fin du mythe du bonheur dans l'avoir et l'accumulation des biens matériels.
- 2. La fin du mythe de la croissance (la « seule voie »).
- 3. La fin du mythe du progrès technique solution à tout problème.

→ Décoloniser l'imaginaire

- 4. Mettre la démocratie, la vraie**, au centre de la société et non plus l'économie qui n'est qu'un outil.
- 5. Affirmer les droits de la nature et donc les droits des autres espèces.
- * Paradigme : une conception du monde, une manière de voir les choses.
- ** Démocratie : liberté, égalité et autonomie des individus et des collectivités.

Décoloniser l'imaginaire, Serge Latouche. Parangon, 2011.

Quelques propositions de valeurs

- Le respect des limites et le sens de la mesure.
- Le partage.
- La coopération ainsi que l'autonomie individuelle et collective.
- Une culture de l'être et non pas de l'avoir.
- Le respect des diversités culturelles et biologiques.

Quelques propositions politiques

- La décroissance radicale des flux de matière et d'énergie (la décroissance radicale de la production-consommation) :
 - La relocalisation des activités économiques.
 - Une agriculture pérenne, sans intrants chimiques et autonome.
 - Une forte limitation de la consommation de viande.
 - La fin des gaspillages et de l'obsolescence programmée.
 - Une économie du réparable et du recyclable.
 - La fin de la publicité.
- Le renoncement aux énergies fossiles.
- L'abandon immédiat du nucléaire.
- L'abandon de la bagnole et autres gadgets individuels.
- La démocratie directe.
- Une limitation du champ de la propriété privée.
- Un revenu maximal et peut-être un revenu minimal inconditionnel pour tous.
- Le renforcement des services publics.

...

Le mot de la fin avec Ivan Illich... Énergie et équité (1973)

La consommation d'énergie au delà d'un certain seuil détruit :

- L'environnement physique ;
- La structure sociale.
- « Crise de l'énergie », un euphémisme qui

masque:

- Une contradiction : atteindre à la fois équité et croissance illimitée.
- Une frustration.

consacre une illusion,

la substitution à l'infini du travail de l'homme par la machine.

Surabondance d'énergie

Energie et équité, Ivan Illich. Editions Le Seuil, 1973 (épuisé). En PDF ou dans Oeuvres complètes (Fayard)

liege.mpOC.be

Plus d'information

Sur www.liege.mpOC.be:

Pour obtenir les documents mentionnés et plus d'information sur les questions abordées, voir les sections *Articles* (PDF) et *Livres* (livres en PDF et bibliographie).

Pour télécharger le film *Sans Lendemain*, obtenir le DVD (3 €) et des informations sur ce film et sa traduction.

Pour télécharger ce diaporama (ppt et pdf).

...